Microprocessor - based controller μ Celsitron baelz 6497 / baelz 6597
Three - position step controller with setpoint shift input
Cascade controller with three - position step output

Industrial controller with special PID - step controller algorithm

- Easy operation

User - defined operating level
Digital displays for process variables and setpoints

- Measurement inputs for Pt 100, current and voltage signals
- PID constant controller with setpoint shift
- P - PID cascade controller
- Compact design $96 \mathrm{~mm} \times 96 \mathrm{~mm} \times 135 \mathrm{~mm}$
- Two - position control
- Three - position control
[Manual -/ automatic changeover
- Control via digital inputs
- Robust self - optimization

Semi - conductor memory for data protection
\square Plug - type terminals
Degree of protection Front IP 65

- Compact design $48 \mathrm{~mm} \times 96 \mathrm{~mm} \times 140 \mathrm{~mm}$

Rights reserved to make technical changes !

Operating Instructions

Ol 6497 / 6597

Contents

1. Function overview 3
2. Operating and setting 5
2.1 Setting setpoint SP in automatic mode 5
2.2 Opening / closing actuator in manual mode 5
2.3 Branch to parameterization -/ configuration level 5
2.4 Branch to the second operating level 7
2.5 Set parameters / configuration points. 7
3. Parameterization -/ configuration level. 8
3.1 Optimization 8
3.2 Proportional band Pb 10
3.2.1 Three - position controller. 10
3.3 Integral action time tn 10
3.3.1 Two - position controller. 10
3.4 Derivative action time td 10
3.5 Dead band db. 10
3.6 Actuating time t.P. 10
3.7 Alarm. 11
3.8 Decimal point for LED displays 12
3.9 Scaling the process variable display PV. dI.L,dI.H 12
3.10 Setpoint limitation SP.L,SP.H... 12
3.11 Cascade controller. CAS 13
3.12 Physical unit of the setpoint shift input (at CAS $=0$) 13
Physical unit of the slave control circuit (at CAS = 1) 13
3.13 Starting point of the setpoint shift St.P (at CAS = 0) 13
3.14 Setpoint of the slave controlled variable SP.S (at CAS $=1$) 13
3.15 Effect of the setpoint shift (at CAS $=0$). 14
3.16 Display slave control circuit (at $\mathrm{CAS}=1$) 14
3.17 Influence of SLP 14
3.18 Setpoint limitation LIM. 15
3.19 Setpoint offset OFS 15
3.20 Process gain P.G. 17
3.21 Input for process variable PV (at CAS $=0$). 17
Input for main controlled variable PV (at CAS = 1). 17
3.22 Input for setpoint shift signal (at CAS $=0$) 17
Input for slave controlled variable PV (at CAS =1) 17
3.23 Measured value filter for analog inputs. 17
3.24 Response to PV sensor failure. 18
3.25 Interlocking the manual / automatic switchover 18
3.26 Direction of action of the controller. 18
3.27 Second operating level 18
3.28 Access to the parameterization / configuration level. 18
4. Installation 19
5. Electrical connection 19
5.1 Connection diagram 20
6. Commissioning the constant controller with setpoint shift input (CAS $=0$) 21
7. Commissioning the cascade controller ($\mathrm{CAS}=1$). 22
8. Technical data 24
9. Order number baelz 6497 / baelz 6597 25
10. Overview of parameterization / configuration level, data list. 26

Warning:

During electrical equipment operation, the risk that several parts of this unit will be connected to high voltage is inevitable. Improper use can result in serious injuries or material damage. The warning notes included in the following sections of these operating instructions must therefore be observed accordingly. Personnel working with this unit must be properly qualified and familiar with the contens of these operating instructions.
Perfect, reliable operation of this unit presupposes suitable transport including proper storage, installation and operation.

Operating Instructions

Ol 6497 / 6597

1. Function overview

Analog input Pt100
Analog input $0 / 2$ to 10 V
Analog input $0 / 4$ to 20 mA
Process variable output 0 to +10 V For Pt 100 as process variable sensor PV.
Digital input OPEN
Digital input CLOSE
Digital input STOP
Digital input OFS

The analog inputs can be used optionally as process variable input PV, as setpoint shift input or as input for the slave controlled variable.

Opens the actuator
Closes the actuator
The actuator stops in its current position
For setpoint lowering / raising.
$\}_{\text {mode }}$ not in manual

Constant controller with setpoint shift

Digital inputs
Voltage range 0 / 12-24 VDC
Power supply optionally internal or external

Alarm $\quad \nabla \nabla 2$ limits possible

Cascade controller

2. Operating and setting

Operating level:

Actuator closes

Slave control circuit is
displayed, slave
Display in \%

Setpoint raising lowering
effective, offset

Manual mode

2.1 Setting setpoint SP * in automatic mode

* CAS $=0$: Basic setpoint, on which the setpoint shift acts

CAS $=1$, SLA $=0$: Setpoint of the main controlled variable
CAS $=1, \mathrm{SLA}=1$: Basic setpoint of the slave control circuit (working point) which is shifted by the main control circuit
$\mathrm{IIDP}_{\mathrm{sp}}$

\square 旧吅

in individual steps

Continuous adjustment at increasing speed
within 5s accept new setpoint, otherwise back to the old, still effective setpoint

$$
\underline{X}=\text { press continuously }
$$

CAS $=0:$ The shifted setpoint is displayed again after pressing the P key.

2.2 Opening / closing actuator in manual mode

2.3 Branch to parameterization -/ configuration level

Operating level
P. $\triangle>2 \mathrm{~s} \quad$ press longer than 2 s
without password (s. also 3.28: PAS)
first
configuration point
with password without second operating level (s. also 3.27: OL.2)

* if selected for the user - defined operating level 1) at $\mathrm{CAS}=1$
set
password
invalid password:
back to operating level
valid password:
s. page 28: PAS / Cod
(P) $\otimes>2 \mathrm{~s}$ back to the operating level possible at any time

Manual -/ automatic changeover possible at any time

Operating Instructions

OI 6497 / 6597

2.4 Branch to second operating level (user - defined operating level)

Parameters and configuration points which have been selected for the second operating level (see also 3.27: OL.2) can be called up and set without entering the password, if access to the parameterization -/ configuration level is protected by a password (see also 3.28: PAS).

P] $\otimes 2 \mathrm{~s}$ Branch to second operating level

Back to operating level

* if this function was selected for the user - defined operating level and access to the parameterization -/ configuration level was blocked through the password.

1) at $\mathrm{CAS}=1$.

At the second operating level, the following can be set optionally

- the self - optimization OPt
- the alarm AL., HYS
- the starting point of the setpoint shift St.P or the basic setpoint of the slave control circuit SP.S
- the effect of the setpoint shift SEn or the display of the slave control circuit SLA
- the influence of the setpoint shift SLP
- the setpoint limitation LIM
- the setpoint raising / lowering OFS.

2.5 Set parameters / configuration points

\triangle greater

Within 5 s accept new value and call up next variable

Back to operating level possible at any time
Manual -/ automatic changeover possible at any time

3. Parameterization -/ configuration level

Procedure during optimization:

For the constant controller with setpoint shift (CAS = 0):

From manual mode:

- Set setpoint SP
- Switch over to manual mode
- By opening / closing the actuator, set the process variable PV to a value larger / smaller than the setpoint SP (a)
- Wait until PV has stabilized (b)
- Skip to the parameterization / configuration level
- Set OPt = "1"
- Set SLP = "0" *
- If known, enter process gain P.G
(standard setting: P.G $=100 \%$)
- Return to the operating level
- Switch over to automatic mode
* After conclusion of the self-optimization, set SLP back to the wanted value.

Operating Instructions

OI 6497 / 6597

For the cascade controller (CAS = 1):

From manual mode:

- Skip to the parameterization -/ configuration level
- Set SLA = "1" (display slave control circuit)
- Set SLP = "0" *
- Return to the operating level
- Set setpoint SP (slave control circuit setpoint)
- Switch over to manual mode
- By opening / closing the actuator, set the process variable PV to a value larger / smaller than the setpoint SP (a)
- Wait until PV has stabilized (b)
- Skip to the parameterization -/ configuration level
- Set OPt = "1"
- If known, enter process gain P.G
(standard setting: P.G $=100 \%$)
- Return to the operating level
- Switch over to automatic mode
* After conclusion of the self-optimization set SLP back to the wanted value.

The self - optimization starts with the manual / automatic switchover (for optimization from manual mode) or with the setpoint change $\Delta \mathrm{SP}$ (for optimization in the automatic mode). The tunE display is shown cyclically in the setpoint display SP during the optimization process. The determined parameters ($\mathrm{Pb}, \mathrm{tn}, \mathrm{td}, \mathrm{P} . \mathrm{G}$) are taken over automatically at the end of self - optimization.

The optimization routine is not started if the system deviation Xw (manual mode) or the setpoint change $\Delta \mathrm{SP}$ (automatic mode) is less than 3.125% of the measuring range PV at the start of the optimization process. The change of the process variable PV or of the setpoint SP during the optimization should run in the same range and in the same direction in which the system is controlled after optimization, i.e. the optimization process should correspond as accurately as possible to the later control process. If process sequences with strongly different time behaviour occur in the course of a control sequence (e.g. fast heating up, slow cooling down), then the more important part of the process must be optimized.
If the process sequences are equivalent, then the slower process must be optimized.
In systems with linear transmission behaviour (constant process gain $\mathrm{P} . \mathrm{G}=\frac{{ }^{\prime} \mathrm{PV}}{'^{\prime} \mathrm{Y}}$ over the entire control range), an optimization process already always delivers the optimum controller parameters.
If the transmission behaviour of the system is non - linear (the process gain P.G $=\frac{{ }^{\prime} \mathrm{PV}}{1} \mathrm{Y}$ changes, e.g. with the setpoint SP to
be controlled), then the variable process gain P.G has a decisive influence on the controller parameters. Here the process variable PV should approximately reach the target setpoint during the optimization process.
If this is not the case, a further optimization process must be performed. The process gain P.G in the working point was determined automatically in the preceding optimization process.
If the process gain P.G in the working point is known, it can be entered manually before starting optimization (see also 3.20: P.G)
The actuator may be neither closed nor 100% open before the start of or during the optimization process. The optimization is interrupted automatically, if it is not finished within 42 minutes.
After each performed optimization, the configuration point OPt is set automatically to 0 .
An optimization process can be interrupted at any time by pressing the manual - or briefly the \mathbf{P} key.

NO ENTRIES OR SWITCHING OVER MAY BE PERFORMED DURING THE OPTIMIZATION PROCESS!

Operating Instructions

OI 6497 / 6597

3.2 Proportional band $\mathbf{P b}$ *

Setting range: 1.0 \% to 999.9%
Proportional action of the $\mathrm{PI}(\mathrm{D})$ three - position step controller

3.2.1 Three-position controller *

by settings: $\mathbf{P b}=\mathbf{0 . 0}$
tn >0
P
Control action adjustable via dead band db.
(see also 3.5: db)

3.2.1 Three - position controller

Setting range: 1 s to 2600 s
Integral action of the $\operatorname{PI}(\mathrm{D})$ three - position step controller

3.3.1 Two - position controller

by setting $\mathbf{t n}=\mathbf{0}$
Control action adjustable via dead band db.
(see also 3.5: db)

3.3.1 Two - position controller

\square Ed 3.4 Derivative action time td *

Setting range: 1 to 255 s
P
Derivative action of the PID three - position step controller
By setting td $=0$: PI three - position step controller

3.5 Dead band db *

Setting range: 0 to extent of measuring range
[phys. units] ($\mathrm{x} 0,1$ at $\mathrm{dP}=0$)
Hysteresis: db/2
No control pulses at control deviation smaller db .
(see also 3.2.1 three - position controller
3.3.1 two - position controller)

3.5 Dead band

3.6 Actuating time t.P (Valve actuation time)

Setting range: 5 s to 300 s
Time to pass through the correcting range 0 to

100% (stroke) at constant OPEN or CLOSE - pulse

* at CAS = 1: Parameters of the slave control circuit, slave

3.7 Alarm

At cascade controller $(\mathrm{CAS}=1)$, the alarm always refers to the displayed control circuit
SLA $=0$: Main controlled variable PV - setpoint SP of the main controlled variable
SLA = 1: Slave controlled variable PV - setpoint SP of the slave controlled variable
The alarm relay operates according to the closed circuit principle.

Selection AL = 0:

no alarm, also not on sensor fault (see also 3.24: SE.b)

Selection AL = 1:
Alarm at a limit value based on the setpoint SP (type A)
and on sensor fault.
Alarm at $\mathrm{SP} \pm \mathbf{A L}=$
Setting range: 0 to \pm measuring range (physical unit)

Alarm hysteresis HYS

Release hysteresis of the alarm relay.
Setting range: 0 to measuring range
(physical unit) (x 0.1 at $\mathrm{dP}=0$)

Selection AL = 2:
Alarm at a fixed limit value (type B)
and on sensor fault
Alarm at AL.-
Setting range: Measuring range (physical unit)

Alarm hysteresis HYS

Release hysteresis of the alarm relay.
Setting range: 0 to measuring range
(physical unit) (x 0.1 at $\mathrm{dP}=0$)

Selection AL = 3:

Alarm at leaving a band around the setpoint SP (type C) and on sensor fault:
Alarm at SP - AL. \equiv and $\mathrm{SP}+\mathbf{A L} . \equiv$

Lower band half:

Setting range: 0 to - measuring range
(physical unit)
Alarm at SP - AL. \equiv
Alarm hysteresis HYS (-)
lower band half, reset hysteresis of alarm relay. Setting range: see before.

Selection AL = 1 (type A)
In case of sensor failure: Alarm independent of the adjusted limit value

Selection $\mathrm{AL}=2$ (type B)
In case of sensor failure: Alarm independent of the adjusted limit value

Selection AL = 3 (type C)
In case of sensor failure: Alarm independent of the adjusted limit value

Upper band half :
Setting range: 0 to + measuring range (physical unit)
Alarm at $\mathrm{SP}+\mathbf{A L} . \equiv$

Alarm hysteresis HYS (+)
upper band half, release hysteresis of the alarm relay. Setting range see before.

3.8 Decimal point for LED displays

Selections: 0 Display without decimal point
1 Display with decimal point
After each change enter dI.L and dI.H anew (see also 3.9: dI.L, dI.H)

3.9 Scaling the process variable display PV

Display.Low Enter: Zero point of the transmitter Indication at start of measuring range
Setting range: -999 (-99.9 at $\mathrm{dP}=1) \leq \mathrm{dI} . \mathrm{L} \leq \mathrm{dI} . \mathrm{H}-1$ [phys. units] (dI.L must be less than dI.H) standard value: $\mathbf{0}^{\circ} \mathrm{C}$ or $\mathbf{3 2}{ }^{\circ} \mathrm{F}$

Display.High Enter: End point of the transmitter
Indication at end of measuring range
Setting range: dI.L $+1 \leq \mathrm{dI} . \mathrm{H} \leq 9999(999.9$ at $\mathrm{dP}=1)$ [phys. units] (dI.H must be greater than dI.L)
standard value: $\mathbf{3 0 0}{ }^{\circ} \mathrm{C}$ or $\mathbf{5 7 2}^{\circ} \mathrm{F}$

\triangle
At In.P $=0$, dI.L and dI.H have to correspond to the Pt $100-$ measuring range of the supplied device (see type plate)
baelz 6497 / $6597-2.4-\ldots$: dI.L $=000(.0)$, dI. $\mathrm{H}=300(.0)$
baelz 6497 / 6597-2.2-... : dI.L $=000(.0)$, dI. $\mathrm{H}=400(.0)$
baelz 6497 / $6597-2.50-\ldots$: dI.L $=-50(.0)$, dI. $\mathrm{H}=250(.0)$
At In. $\mathrm{P}^{1} 0$, dI.L and dI.H have to correspond to the measuring range of the connected transmitter.
(s. also 3.21: In.P)

At unt $=1$, also valid for the setpoint shift input of the slave control circuit (see also 3.12: unt)

3.10 Setpoint limitation

The setpoint limitation is effective for:

$$
\text { - the basic setpoint for CAS }=0
$$

- the setpoint SP of the main controlled variable for $\mathrm{CAS}=1$
- the setpoint SP for the slave controlled variable for SLA $=1$

It is ineffective for:

$$
\begin{aligned}
& \text { - shift signals } \\
& \text { - SP.S at CAS = } 1
\end{aligned}
$$

Setpoint.Low lowest settable setpoint
Setting range: dI.L to SP.H (physical unit) (see also 3.9: dI.L)
At SP.L = SP.H, the setpoint is fixed to one value.

Setpoint.High highest settable setpoint
Setting range: SP.L to dI.H (physical unit) (see also 3.9: dI.H)
At SP.L = SP.H, the setpoint is fixed to one value.

3.11 Cascade controller

Selections: 0 Constant controller with setpoint shift through a second analog input
1 Constant controller, $\mathrm{P}-\mathrm{PI}(\mathrm{D})$ cascade, slave controlled variable through second analog input

3.12 Physical unit of the setpoint shift input (at CAS = 0)
Physical unit of the slave control circuit (at CAS = 1)

If - the process variable input PV and the setpoint shift input (at $\mathrm{CAS}=0$)

- the process variable input PV and the input of the slave controlled variable (at CAS $=1$)
have the same physical unit and the same measuring range (e.g. $0-300^{\circ} \mathrm{C}$), the parameters for the setpoint shift $(\mathrm{CAS}=0)$ or the parameters of the slave control circuit $(\mathrm{CAS}=1)$ can be entered in the range dI.L-dI.H. Entries in physical unit.
If the process variable input PV and the setpoint shift input ($\mathrm{CAS}=0$) or the input of the slave controlled variable $(C A S=1)$ have different physical units or measuring ranges, then the corresponding parameters must be entered in $\%$ of the measuring range of the setpoint shift input $(\mathrm{CAS}=0)$ or of the input of the slave controlled variable (CAS = 1).

Selections: 0 Input of the relevant parameters in $0-100 \%$ of the measuring range of the second analog input
1 Input of the relevant parameters in the physical unit of the process variable PV, range dI.L - dI.H
Relevant parameters: \quad Starting point St.P (at CAS $=0$)
Slave control circuit setpoint SP.S (at CAS = 1)
Setpoint limitation LIM
Offset OFS
The LED "(\%)" lights up on entries in \%. (see also 3.9: dI.L, dI.H, 3.11: CAS)

3.13 Starting point of the setpoint shift St.P (at CAS = 0)

Setting range: 0 to 100% of the measuring range of the setpoint shift input (at unt $=0$)
LED "(\%)"lights up
dI.L to dI.H (physical unit of the process variable PV) $($ at unt = 1)

Measured value of the setpoint shift input at which the setpoint shift starts.
(see also 3.12: unt, diagram page 16)

3.14 Setpoint of the slave controlled variable SP.S (at CAS = 1)

Basic setpoint of the slave control circuit
Working point of the cascade controller, setpoint for control deviation $=0$
Setting range: 0 to 100% of the measuring range of the setpoint shift input (at unt $=0$)
LED "(\%)"lights up
dI.L to dI.H (physical unit of the process variable PV) $($ at unt $=1)$

The setpoint can optionally also be set at the operating level.
(see also 3.11: CAS, 3.12: unt, diagram page 23)
3.15 Effect of the setpoint shift (at CAS = 0) (sense)

Selections: 0 Setpoint shift for measured values of the setpoint shift input which are smaller than the value of the starting point St.P, shift for measured values $<$ St.P
1 Setpoint shift for measured values of the setpoint shift input which are larger than the value of the starting point St.P, shift for measured values $>$ St.P

Setpoint shift effective for the internal setpoint that can be set on the keyboard (see also 3.13: St.P, diagram page 16)

3.16 Display slave control circuit (at $\mathrm{CAS}=1$) (slave controller)

Selections: 0 Main controlled variable PV and setpoint SP are displayed on the controller, SP can be set. Main control circuit
1 Slave controlled variable and setpoint of the slave controlled variable SP.S (possibly shifted) are displayed on the controller. SP.S can be set. Slave control circuit

LED "SLA" lights up for SLA = 1
LED "(\%)" lights up for SLA = 1 and unt = 0
If the slave control circuit is displayed, a possibly set alarm also refers to the slave controlled variable and its setpoint
(see also 3.11: CAS, 3.12: unt, 3.14: SP.S, 3.7: Alarm)

3.17 Influence of SLP (slope)

Influence (strength of the setpoint shift) (for CAS $=0$)
Influence of the main control circuit on the slave control circuit (for CAS =1)

Setting range: $(+) 1000$ to $-1000 \quad 1000$ corresponds to factor of $10.00 \quad(+)$ is not displayed
for setting: $\mathrm{SLP}=0$: no influence
SLP $=100:$ influence $=1: 1 \quad 100$ corresponds to factor of 1.0
for setpoint shift (CAS = 0):
SLP positive $=$ only setpoint raising
SLP negative $=$ only setpoint lowering
effect one - sided

Interplay of St.P, SEn and SLP:

Sen	SLP	St.P
0	positive	Setpoint raising below St.P
0	negative	Setpoint lowering below St.P
1	positive	Setpoint raising above St.P
1	negative	Setpoint lowering above St.P

Influence $=$ delta $\mathrm{SP}=($ difference measured value $-\mathrm{St} . \mathrm{P}) * \operatorname{SLP} \quad($ one - sided $)$
SP $=$ setpoint \quad St. $P=$ starting point \quad SEn $=$ effect of the shift \quad SLP $=$ influence
(see also 3.13: St.P, 3.15: SEn, diagram page 16)
for the cascade controller ($\mathbf{C A S}=\mathbf{1}$): Bilateral effect
Interplay of PV, SP, SLP and SP.S:

PV, SP	SLP	SP.S
PV larger than SP	positive	SP.S is raised
PV smaller than SP	positive	SP.S is lowered
PV larger than SP	negative	SP.S is raised
PV smaller than SP	negative	SP.S is lowered

Influence $=$ delta SP.S $=(\mathrm{SP}-\mathrm{PV}) *$ SLP \quad [bilateral]
$\mathrm{PV}=$ main controlled variable
SP.S = setpoint of the slave controlled variable
$\mathrm{SP}=$ setpoint of the main controlled variable SLP = influence
(see also 3.14: SP.S, diagram page 23)

3.18 Setpoint limitation LIM

Limitation of the shifted setpoint $($ for $\mathrm{CAS}=0)$
Limitation of the setpoint of the slave controlled variable (for CAS = 1)

Setting range: -100% to $(+) 100 \%$ of the measuring range of the shift input LED "(\%)" lights up

- dI.H to $(+)$ dI.H [physical unit of the process variable PV]
(at unt $=0$)
$(+$) is not displayed (at unt =1)

LIM positive $=$ maximum limitation
LIM negative $=$ minimum limitation
Input: Difference between dI.L and limit
e.g.: dI.L $=0$, dI. $H=+300$:
minimum limit at $60^{\circ} \mathrm{C}$: \quad LIM $=-\left(60^{\circ} \mathrm{C}-0^{\circ} \mathrm{C}\right)=-60$
maximum limit at $90^{\circ} \mathrm{C}: \quad \mathrm{LIM}=+\left(90^{\circ} \mathrm{C}-0^{\circ} \mathrm{C}\right)=+90$
e.g.: dI. $L=-50^{\circ} \mathrm{C}, \mathrm{dI} . \mathrm{H}=+250$:
minimum limit at $60^{\circ} \mathrm{C}$: \quad LIM $=-\left(60^{\circ} \mathrm{C}+50^{\circ} \mathrm{C}\right)=-110$
maximum limit at $90^{\circ} \mathrm{C}: \quad$ LIM $=+\left(90^{\circ} \mathrm{C}+50^{\circ} \mathrm{C}\right)=+140$
The setpoint limitation LIM is ineffective for the offset OFS.
(see also 3.12: unt, 3.19: OFS, diagram page 16)

3.19 Setpoint offset OFS

Lowering / raising the shifted setpoint \quad (for CAS $=0$)
Lowering / raising the setpoint of the slave controlled variable (for CAS =1)
Setting range: -100% to $(+) 100 \%$ of the measuring range of the shift input
(at unt $=0$)
$(+)$ is not displayed (at unt $=1$)

OFS positive $=$ setpoint raising by the absolute amount of OFS
OFS negative $=$ setpoint lowering by the absolute amount of OFS
(e.g. night lowering)
$\mathrm{OFS}=0 \quad=$ no raising / lowering
The setpoint lowering / raising is triggered through the digital output OFS.
LED "OFS" lights up on setpoint raising / lowering
The setpoint limitation LIM is ineffective for OFS.
(see also 3.11: CAS, 3.12: unt, 3.18: LIM, diagram page 16, 5.1: Connection diagram)

Setpoint shift through the analog input In.S

Setpoint shift for values of the shift input In.S larger than ST.P

Setpoint shift for values of the shift input In.S smaller than ST.P

3.20 Process gain P.G

Setting range: 1 to 255%
Gain of the controlled system P.G $=\frac{\text { Change of the process variable PV }}{\text { Change of the actuating variable } \mathrm{Y}}=\frac{{ }^{\prime} \mathrm{PV}}{{ }^{\prime} \mathrm{Y}}$ in $\%$
D PV [\% of the measuring range of PV]
D Y [$\%$ of the actuating range (stroke) $0-100 \%$]
e.g: $\mathrm{P} . \mathrm{G}=50 \%: \frac{\mathrm{I}}{} \mathrm{PV}=0,5 \quad$ A change of the valve position $\Delta \mathrm{Y}$ of 10% results in a
P.G $=100 \%: \frac{\mathrm{I} P V}{I \mathrm{Y}}=1,0 \quad$ A change of the valve position $\Delta \mathrm{Y}$ of 10% results in a
 change in the process variable PV of 10%.

A change of the valve position $\Delta \mathrm{Y}$ of 10% results in a change in the process variable PV of 12.5%.

The process gain P.G is required for the self - optimization of the control parameters. If it is unknown, P.G is determined automatically during self - optimization. (see also 3.1: OPt)
On non - linear transfer behaviour of the system, the process gain changes with the working point (e.g. on controlling different setpoints).

3.21 Input for process variable $\mathbf{P V}$ (at $\mathrm{CAS}=0$) (input PV) Input for main controlled variable PV (at CAS =1)

Selections:

0 PV is supplied with a Pt100 sensor and connected to terminals $14,15,16$
1 PV is supplied as $0-20 \mathrm{~mA}$ current signal and connected to the terminals $12,16^{*}$
2 PV is supplied as $4-20 \mathrm{~mA}$ current signal and connected to the terminals $12,16^{*}$
3 PV is supplied as $0-10 \mathrm{~V}$ voltage signal and connected to the terminals 13,16
4 PV is supplied as $2-10 \mathrm{~V}$ voltage signal and connected to the terminals 13,16

* not for connection of a transducer in two - wire system
(see also 5: Electrical connection)

3.22 Input for setpoint shift signal (at $\mathrm{CAS}=0$) (input SP)
 Input for slave controlled variable PV (at CAS = 1)

Selections:
0 Pt100 sensor, terminals $14,15,16$
$10-20 \mathrm{~mA}$ current signal, terminals 12,16 *
$24-20 \mathrm{~mA}$ current signal, terminals 12,16 *
$30-10 \mathrm{~V}$ voltage signal, terminals 13,16
4 2-10 V voltage signal, terminals 13,16
(see also 5: Electrical connection)

3.23 Measured value filter for analog inputs (filter)

Software 1st order low - pass filter with adjustable time constant Tf for suppressing interference signals and for smoothing fast measured value fluctuations.
Setting range: 100 to 255

The following assignment applies:
Formula :
$\mathrm{Tf}=-0,04 / \ln ($ input $/ 256)$

Input:	255	254	252	250	240	$230 *$	220	200
Tf [s]:	10,22	5,10	2,54	1,69	0,62	0,37	0,26	0,16

3.24 Response to $\mathbf{P V}$ sensor failure

Reaction of the actuator in automatic mode on:
Selections: 0 Actuator closes
1 Actuator opens
2 Actuator stays in its momentary position
In a transmitter / sensor fault, the error message Err (error) appears in the LED display PV.
 Alarm message if alarm A, B or C is configured, independent of the set alarm limit. After the fault is no longer present, the controller returns automatically to the automatic mode. In the case of electrical signals without live zero point, $0-20 \mathrm{~mA}$ or $0-10 \mathrm{~V}$, no monitoring for line break and short circuit is possible.

$\square \Pi_{\square}$ 3.25 Interlocking the manual / automatic switchover (manual)

Selections: 0 Switching over by keyboard possible at any time
1 Interlocking in the momentary conditions MAn. to - 1 - in automatic mode: constant automatic mode MAn. to -1- in manual mode: constant manual mode

3.27 Second operating level (operating level 2)

Select functions of the user - defined operating level.
Setting range: 0 to 127 :
0 No second operating level
1 Self-optimization can be activated at the 2nd operating level (see also 3.1: OPt)
2 Limit and hysteresis of the selected alarm can be entered at the 2nd operating level (see also 3.7: Alarms)
4 The starting point of the setpoint shift St.P for CAS $=0$ or the setpoint of the slave controlled variable SP.S for CAS = 1 can be set at the 2nd operating level (see also 3.13: St.P, 3.14: SP.S)
8 The effect of the setpoint shift SEn for CAS $=0$ or the display of the slave control circuit SLA for CAS $=1$ can be set at the 2nd operating level (see also 3.15: Sen, 3.16: SLA)
16 The influence SLP can be set at the 2nd operating level (see also 3.17: SLP)
32 The setpoint limitation LIM can be set at the 2nd operating level (see also 3.18: LIM)
64 The setpoint offset OFS can be set at the 2nd operating level (see also 3.19: OFS)
The code numbers of the wanted functions are added and the result is entered.
The password must be activated (see also 3.28: PAS)
Access to the user - defined operating level is not protected by the password.

3.28 Access to the parameterization / configuration level (password)

Protecting the parameterization / configuration level through the password Cod prevents unauthorized access.
Selections: 0 No protection of the parameterization / configuration level. OL. 2 ineffective.
1 Access to the parameterization / configuration level only after entry of the password on the keyboard. OL. 2 effective
(see also 3.27: OL.2; valid password: page 28: PAS / Cod)

Operating Instructions

Ol 6497 / 6597

4. Installation

The device is suitable for front panel installation and for installation in consoles with arbitrary installation position. Push the controller from the front into the control panel cut - off provided for it and fasten by means of the enclosed clamps.

The ambient temperature at the installation point must not exceed the permissible temperature for the nominal use. Ensure sufficient ventilation, also for larger packing density of the devices. The device must not be installed inside explosion - hazardous areas.

Housing dimensions 6497

Housing dimensions 6597

5. Electrical connection

The plug - type connection terminals and the connection diagram are located at the rear of the device.
The relevant valid national regulations (in Germany DIN VDE 0100) must be observed for the installation. The
 electrical connection is made according to the connection diagrams / connection pictures of the device. Shielded cables must be used for measuring leads and control leads (digital inputs). These must also be run in the control cabinet separately from power current leads.
Before switching on ensure that the system voltage stated on the name plate agrees with the line voltage.
The connection terminals may be pulled off from the device only in the currentless state with connected cables.

Maximum equipment ($6497 / 2$ and $6597 / 2$)
(s. also 8. Order number)

Minimum equipment
($6497 / 1$ and $6597 / 1$)
(s. also 8. Order number)

5.1 Connection diagram

Operating Instructions

Ol 6497 / 6597
6. Commissioning the constant controller with setpoint shift input (CAS $=0$)

Sequence:	Remedial action in the case of faults:
\square Device installed correctly ?	see also 4: Installation
\square Electrical connection according to valid regulations and connection diagrams?	see also 5: Electrical connection
\square Switch on line voltage. When the device is switched on, all display elements on the front panel light up for approx. 2 s (lamp test). The device is then ready for use.	Compare system voltage on the name plate with line voltage.
\square Switching over to manual mode	see also 2.2: Manual mode
- Does the process variable display PV correspond to the process variable at the measuring site ?	Check sensor, measuring cable and electrical connection. see also 5: Electrical connection, 3.21: In.P, 3.9: dI.L, dI.H
- Does the process variable display PV fluctuate / jump	Adjust measuring filter FIL. see also 3.23: FIL Is the device in the direct vicinity of strong electrical or magnetic interference fields?
- Switch in digital inputs *	see also 5: Electrical connection
- Do the corresponding LED on the front panel light up ?	Check power supply for digital inputs, external switching contacts, signal cables and electrical connection. see also 5.1: Connection diagram
- Is the setpoint shifted correctly ?	see also 3.11: CAS, 3.12: unt, 3.13: St.P, 3.17: SLP, 3.18: LIM, 3.19: OFS
- Does the setpoint display SP fluctuate / jump	Adjust measuring filter FIL, see also 3.23: FIL Reduce influence SLP, see also 3.17: SLP
- Open actuator - Heating controller: does process variable PV rise ? - Cooling controller: does process variable PV fall? - Close actuator - Heating controller: does process variable PV fall? - Cooling controller: does process variable PV rise ?	see also 2.2: Manual mode no reaction: Check actuator and electrical connection between controller and actuator Reversed reaction: Change over OPEN and CLOSE actuator control see also 5.1: Connection diagram
- Enter actuating time t.P of the connected actuator	see also 3.6: t.P
- Set controller parameters with the aid of self optimization	see also 3.1: OPt
- Set strength of the setpoint shift	see also 3.17: SLP
\square Automatic mode	
Manual / Automatic switchover	see also 2.2: Manual mode
Set setpoint SP	see also 2.1: Set setpoint SP in automatic mode
\square Control pulses of the controller too short, switching frequency too high	Enlarge the dead band db see also 3.5 : db

* Option

Operating Instructions

OI 6497 / 6597
6. Commissioning the cascade controller (CAS = 1)

Sequence:	Remedial action in the case of faults:
\square Device installed correctly ?	see also 4: Installation
\square Electrical connection according to valid regulations and connection diagrams?	see also 5: Electrical connection
\square Switch on line voltage. When the device is switched on, all display elements on the front panel light up for approx. 2 s (lamp test). The device is then ready for use.	Compare system voltage on the name plate with line voltage.
\square Switching over to manual mode	see also 2.2: Manual mode
- Does the process variable display PV of the main controlled variable and of the slave controlled variable correspond to the value at the measuring site?	Check sensor, measuring cable and electrical connection. see also 5.: Electrical connection, 3.9: dI.L, dI.H, 3.12: unt, 3.16: SLA, 3.21: In.P, 3.22: In.S
- Does the process variable display PV fluctuate / jump	Adjust measuring filter FIL. see also 3.23: FIL Is the device in the direct vicinity of strong electrical or magnetic interference fields?
- Switch in digital inputs *	see also 5.: Electrical connection
- Do the corresponding LED on the front panel light up ?	Check power supply for digital inputs, external switching contacts, signal cables and electrical connection. see also 5.1: Connection diagram
- Open actuator - Heating controller: does process variable PV rise ? - Cooling controller: does process variable PV fall? - Close actuator - Heating controller: does process variable PV fall? - Cooling controller: does process variable PV rise?	see also 2.2: Manual mode no reaction: Check actuator and electrical connection between controller and actuator Reversed reaction: Change over OPEN and CLOSE actuator control see also 5.1: Connection diagram
- Enter actuating time t.P of the connected actuator	see also 3.6: t.P
- Set controller parameters with the aid of self optimization	see also 3.1: OPt, 3.16: SLA Set SLA = 1
\square Automatic mode	
- Manual / Automatic switchover	see also 2.2: Manual mode
- Display main control circuit	Set SLA $=0$, see also 3.16: SLA
- Set influence SLP - Control tends to oscillations - Control quiet, but large process variable - setpoint difference	Reduce SLP, see also 3.17: SLP Increase SLP, see also 3.17: SLP
- Set working point SP.S - Process variable PV $>$ setpoint SP - Process variable PV $<$ setpoint SP	Reduce SP.S Increase SP.S
- Set setpoint SP	see also 2.1: Set setpoint SP in automatic mode
\square Control pulses of the controller too short, switching frequency too high	Enlarge the dead band db see also 3.5: db

* Option

Operating Instructions

Ol 6497 / 6597

Commissioning the cascade controller

1) Slave control circuit ($\mathrm{SLA}=1$)

Adjust slave control circuit with the aid of the self - optimization
2) Main control circuit $(\mathbf{S L A}=0)$

Adjust influence of SLP
3) Main control circuit $(S L A=0)$

PV

SP

Adjust basic setpoint SP.S (working point).

7. Technical data

$\left.\begin{array}{ll}\text { Line voltage } & \begin{array}{l}230 \mathrm{~V} \mathrm{AC} \\ 115 \mathrm{~V} \mathrm{AC} \\ 24 \mathrm{~V} \mathrm{AC}\end{array} \\ \text { approx. } 7 \mathrm{VA} \\ \text { approx. } 1 \mathrm{~kg}\end{array}\right\}-15 \% /+10 \%, 50 / 60 \mathrm{~Hz}$

8. Order number baelz 6497 / baelz 6597

baelz $06497 / 1$	2.4	-230 V	-00.0
baelz $06597 / 2$	2.2	115 V	S 7.1
	250	24 V	S 8.1

Device versions

Pt100 0° to $300^{\circ} \mathrm{C}(2.4)$
Pt100 0° to $400^{\circ} \mathrm{C}(2.2)$

Pt100 -50° to $250^{\circ} \mathrm{C}(2.50)$
Line voltage 230 V AC

$$
115 \mathrm{~V} \mathrm{AC}
$$

$$
24 \mathrm{~V} \mathrm{AC}
$$

00.0 Standard type

S7. 1 for 2 inputs $0 / 4$ to 20 mA (no input $0 / 2$ to 10 V)
S8.1 for 2 inputs $0 / 2-10 \mathrm{~V}$ inputs (no input $0 / 4$ to 20 mA)

Additional
right hand controller card
\square

Basic version	Device versions	$\begin{aligned} & \hline 6497 / 1 \\ & 6597 / 1 \end{aligned}$	$\begin{aligned} & 6497 / 2 \\ & 6597 / 2 \end{aligned}$
	$1 \times \mathrm{Pt} 100$ input	X	X
	$1 \times 0 / 4$ to 20 mA input	X	X
	$1 \times 0 / 2$ to 10 V input	X	X
	Supply voltage 24 V DC	X	X
	$1 \times$ Digital input OFS	X	X
Options *	$4 \times$ Digital inputs		X
	Process variable output 0 to +10 V		X

9. Overview of parameterization / configuration level, data list

Operating Instructions

Ol 6497 / 6597
Parameter / configuration point
Effect of the setpoint shift
$($ at CAS = $)$
Slave control circuit
$($ at CAS = 1)
Influence

Setpoint limitation

Setpoint offset
Process variable input PV

Shift input
Input for slave controlled variable

Measured value filter PV

Operating Instructions

OI 6497 / 6597
Parameter / configuration point
Display Setting Remarks

Password	PAS	0	\square	No interlock, OL. 2 ineffective
		\square	\square	Access only after entry of the valid password, OL. 2 effective, functions on
			OL. 2 not interlocked	

Device number
Date
Tested
System \qquad

Notes:

