\square
baelz automatic
Operating Instructions
Microprocessor - based controller μ Celsitron baelz 6496 / baelz 6596
Continuous controller

Industrial controller with continuous output

Easy operation
User - defined operating level
Digital displays for process variable and setpoint
Indication of the manipulated variable
Control structure P, PD, PI and PID
Output signal $0 / 4$ to 20 mA or $0 / 2$ to 10 V
Two alarms
Measurement inputs for Pt 100, current and voltage signals
Manual -/ automatic changeover

Compact design $96 \mathrm{~mm} \times 96 \mathrm{~mm} \times 135 \mathrm{~mm}$

Two adjustable setpoints
Remote setpoint
Setpoint ramp
Manipulated variable ramp
Control via digital inputs
Serial interface
Robust self - optimization
Semi - conductor memory for data protection
Plug - type terminals
Degree of protection Front IP 65

Compact design $48 \mathrm{~mm} \times 96 \mathrm{~mm} \times 140 \mathrm{~mm}$

Rights reserved to make technical changes!

Contens

1. Function overview... 3
2. Operation and setting .. 4
2.1 Setting setpoint SP in automatic mode.. 4
2.2 Displaying the manipulated variable Y in automatic mode .. 4
2.3 Temporary changeover from manipulated variable Y to setpoint SP in automatic mode......... 5
2.4 Opening / closing final control element in manual mode.. 5
2.5 Branch to parameterization -/ configuration level... 6
2.6 Branch to second operating level ... 7
2.7 Set parameters / configuration points... 7
3. Parameterization -/ configuration level ... 8
3.1 Optimization... 8

3.3 Integral action time tn ... 10
3.4 Derivative action time td ... 10
3.5 Working point Y.0, Y.E .. 10
3.6 Alarm relays ... 11
3.7 Decimal point for LED-displays .. 14
3.8 Scaling the process variable display PV .. 14
3.9 Setpoint limitation.. 14
3.10 Remote -/ local changeover... 14
3.11 Second setpoint SP. 2 (option).. 14
3.12 Setpoint ramp SP.r .. 15
3.13 Ramp direction... 15
3.14 Process gain P.G .. 15
3.15 Input for process variable PV.. 16
3.16 Input for remote setpoint SP .. 16
3.17 Measured value filter for process variable PV ... 16
3.18 Response to PV sensor failure... 16
3.19 Controller output signal... 16
3.20 Manipulated variable ramp Y.r ... 17
3.21 Interlocking manual -/ automatic changeover .. 17
3.22 Direction of action... 17
3.23 Transfer rate for serial interface (option) ... 18
3.24 Adress for serial interface (option)... 18
3.25 Serial communication (option)... 18
3.26 Second operating level... 18
3.27 Access to the parameterization -/ configuration level, password .. 18
4. Installation... 19
5. Electrical connection.. 19
5.1 Wiring diagram ... 20
6. Commissioning .. 21
7. Technical data .. 22
8. Ordering number .. 23
9. Overview of parameterization -/ configuration level, data list... 24

Warning:

During electrical equipment operation, the risk that several parts of this unit will be connected to high voltage is inevitable. Improper use can result in serious injuries or material damage.
The warning notes included in the following sections of these operating instructions must therefore be observed accordingly.
Personnel working with this unit must be properly qualified and familiar with the contens of these operating instructions.
Perfect, reliable operation of this unit presupposes suitable transport including proper storage, installation and operation.

1. Function overview

Basic device

Operating level: Analog input Pt100
input PV
Analog input $0 / 2$ to 10 V
or as an input for an analog remote setpoint SP
Analog input $0 / 4$ to 20 mA
Digital input REM/LOC
Supply voltage 24 V DC
Analog output $0 / 4$ to $20 \mathrm{~mA}, 0 / 2$ to 10 V
Relay ALARM 1
Relay ALARM 2

Additional functions (option*)

Serial interface RS 485
Process variable output 0 to 10 V
Digital input OPEN
Digital input CLOSE
Digital input STOP
Digital input REM/LOC
Digital input SP. 2
The analog inputs can be used optionally as a process variable

For remote -/ local selection
For two-wire transmitter and digital inputs
Continuous controller output
Selectable alarms. The alarm relays operate on the basis of the normally closed contact principle

Data transfer in accordance with MODBUS protocol
Only with Pt 100 as process variable sensor PV

The actuator opens
not in manual mode
The actuator closes
The actuator stops in its current position
For remote -/ local selection
To change over to second setpoint SP. 2

- connecting 24V DC to the corresponding digital input
- priority: 1. Stop 2. Close 3. Open 4. SP.2 5. Rem/Loc 1. = highest priority

Setpoint limitation minimum value SP.L - setpoint low, maximum value SP.H - setpoint high. Only setpoints within the setpoint limits can be set by way of the keyboard.

Setpoint ramp SP.r. The setpoint change per minute (gradient) can be specified for local and remote setpoints with the aid of the setpoint ramp.

Manipulated variable ramp Y.r. The actuating time for a displacement (stroke) of 100% cap be specified with the aid of the manipulated variable ramp.
Filtering FIL of the process variable input PV. Interference signals and small process variable fluctuations can be smoothed by an adjustable software filter.
sv/24v * Digital inputs, voltage range 0 / 12-24 V DC
${ }_{2}^{24 \mathrm{~V}} \quad$ Internal or external voltage source possible.

* Serial interface

Alarms P 1 limit value PP 2 limit values possible

baelz automatic

Operating Instructions
 OI 6496 / 6596

2. Operating and setting

Alarm 1

Other phys. units available as stickers

Setpoint display commutable to manipulated variable Y

At the device 6596 are the same designations on the adequate functions are valid, only the positioning differs.
2.1 Setting setpoint in automatic mode

Setting range: SP.L to SP.H
Locked setpoint input at SP. 2 ,REM. and S.C $=1$
2.2 Displaying the manipulated variable Y in automatic mode

[^0]
baelz automatic

2.3 Temporary changeover from manipulated variable \mathbf{Y} to setpoint $\mathbf{S P}$ in automatic mode *

2.4 Opening / closing final control element in manual mode

* At changeover to manual mode the current value of the manipulated variable Y is retained.

Setting range: 0 to 100%

baelz automatic

2.5 Branch to parameterization -/ configuration level

P \& $>2 \mathrm{~s}$ Back to operating level possible at any time
(avi Manual -/ automatic changeover possible at any time

baelz automatic

2.6 Branch to second operating level (user - defined operating level)

Parameters and configuration points that have been selected for the second operating level (see also 3.26: OL.2) can be called up and set without entering the password, in case access to the parameterization -/ configuration level is protected by a password (see also 3.27: PAS).

*if this function has been selected for the user - defined operating level and the access to the parameterization -/ configuration level has been interlocked by means of the password.

The following can be set as an option on the second operating level:

- self-optimization OPt
- alarms AL.,HYS
- remote -/ local changeover r.EL
- second setpoint SP. 2
- setpoint ramp SP.r
- serial communication S.C

2.7 Set parameters / configuration points

> Select parameter / configuration point

Set new value in individual steps

(V) smaller

Set new value continuously, at increasing speed

(I) smaller

Within 5 s accept new value and call up next variable

P \& $>2 \mathrm{~s}$	Back to operating level possible at any time
Pime	Manual -/ automatic changeover possible at any time

baelz automatic

3. Parameterization -/ configuration level

3.1 Optimization for automatic determination of favourable control parameters.

Selections: 0 No self - optimization
1 Self-optimization activated

Self-optimization is triggered by:

- a change in the setpoint SP (not for remote analog setpoint rE.L)
- a change in the setpoint SP. 2 on the parameterization -/ configuration level, if SP. 2 is the effective setpoint (see also 3.11: SP.2)
- a changeover from manual to automatic mode

Optimization from manual mode

Optimization in automatic mode

Procedure during optimization:

From the manual mode:

- Set the setpoint SP
- Switch over to manual mode
- Set the process variable PV greater / smaller than the setpoint SP by opening / closing the controlling element (a)
- Wait until PV is stable (b)
- Branch to parameterization -/ configuration level
- Set OPt = "1"
- If known, enter process gain P.G.
(standard setting: $P . G=100 \%$)
- Back to operating level
- Switch over to automatic mode

In the automatic mode:

- Wait until PV is stable (b)
- Branch to parameterization -/ configuration level
- Set OPt = "1"
- If known, enter process gain P.G.
(standard setting: $P . G=100 \%$)
- Back to operating level
- Set the setpoint

Self - optimization starts upon manual -/ automatic changeover (for optimization from the manual mode) or upon setpoint change DSP (for optimization in the automatic mode). During the optimization procedure, the tunE display is shown cyclically in the setpoint display SP . The determined parameters ($\mathrm{Pb}, \mathrm{tn}, \mathrm{Td}, \mathrm{P} . \mathrm{G}$) are accepted automatically at the end of the self-optimization procedure.

Only PI and PID - controllers can be optimized.
P - controllers are optimized as PI - controllers, PD - controllers as PID - controllers.
The optimization routine will not be started, if the control deviation Xw (manual mode) or the setpoint change DSP (automatic mode) is less than 3.125% of the measuring range PV at the beginning of the optimization procedure. The change in the process variable PV or the setpoint must, during optimization, run in the same range and in the same direction in which the process is controlled following optimization, which means that the optimization procedure must correspond to the later control procedure as far as possible. If, during a control process, sequences of the process show extreme differences in time behaviour (e.g. rapid heating, slow cooling), the more important part of the process should be optimized.
If the process sequences are equivalent, the slower procedure has to be optimized.
For systems with linear transfer behaviour (constant process gain P.G $=\frac{{ }^{\prime} \mathrm{PV}}{{ }^{\prime} \mathrm{Y}}$ over the entire control range), one optimization procedure will always provide the optimum control parameters.
If the transfer behaviour of the system is non-linear (e.g. process gain $P . G=\frac{{ }^{\prime} P V}{{ }^{\prime} Y}$ changes with the setpoint SP to be controlled), the variable process gain P.G will have a significant effect on the control parameters. In this case, the process variable PV should come close to achieving the target setpoint during the optimization procedure.
Otherwise, an additional optimization procedure must be carried out. The process gain P.G in the working point was determined automatically in the preceding optimization procedure.
If the process gain P.G in the working point is known, it can be entered manually prior to optimization. (see also 3.14: P.G). The configuration point OPt is reset to 0 automatically following each optimization procedure.
An optimization procedure can be interrupted anytime by

- pressing the hand - key
- pressing the P - key briefly, if setpoint SP is displayed
- pressing twice the P-key briefly, if manipulated variable Y is displayed

NO ENTRIES OR CHANGEOVER OPERATIONS MUST BE MADE DURING THE OPTIMIZATION PROCEDURE!

3.2 Proportional band Pb

Setting range: 1.0% to 999.9%
Proportional action of the $\mathrm{P}(\mathrm{ID})$ - controller

$\square\left\llcorner_{\square}\right.$ 3.3 Integral action time tn

Setting range: 1s to 2600s
Integral action of the $\mathrm{PI}(\mathrm{D})$ - controller
$\mathrm{tn}=0: \mathrm{P}$ - controller at $\mathrm{td}=0$
PD - controller at $\mathrm{td}>0$

\square 匕d 3.4 Derivative action time td

Setting range: 1 to 255 s

Derivative action of the $\mathrm{P}(\mathrm{I}) \mathrm{D}$ - controller
$\mathrm{td}=0$: P - controller at $\mathrm{tn}=0$
PI - controller at $\mathrm{tn}>0$

3.5 Working point for setpoint $=0 \%$ (at $P(D)$ - controller)

Manipulated variable Y at $\mathrm{PV}=\mathrm{SP}$
Setting range: 0 to 255% of correcting range Y
Y. $0=Y . E$: fixed working point.
Y. $0 \neq$ Y.E: sliding working point, dependent on the setpoint

Calculation of Y. 0 at sliding working point:

$$
\mathrm{Y} .0=\frac{\mathrm{Y} 2-\mathrm{Y} 1}{\mathrm{SP} 2-\mathrm{SP} 1} \cdot(\mathrm{SP} 0-\mathrm{SP} 1)+\mathrm{Y} 1
$$

Working point for setpoint $=\mathbf{1 0 0} \%($ at $\mathrm{P}(\mathrm{D})$ controller $)$

Setting range: 0 to 255% of correcting range Y
Y. $0=Y . E$: fixed working point.
Y. $0 \neq$ Y.E: sliding working point, dependent on the setpoint
Calculation of Y.E at sliding working point:

$$
\mathrm{Y} . \mathrm{E}=\frac{\mathrm{Y} 2-\mathrm{Y} 1}{\mathrm{SP} 2-\mathrm{SP} 1} \cdot(\mathrm{SPE}-\mathrm{SP} 1)+\mathrm{Y} 1
$$

Choice of control mode	- P - controller: - PD - controller: - PI - controller: - PID - controller:	$\begin{aligned} & \mathrm{tn}=0, \mathbf{t d}=0 \\ & \operatorname{tn}=0, \operatorname{td}>0 \\ & \operatorname{tn}>\mathbf{0}, \operatorname{td}=0 \\ & \operatorname{tn}>0, \mathbf{t d}>0 \end{aligned}$

3.6 Alarm relays

The alarm relays operate on the basis of the normally closed contact principle.

3.6.1 Alarm Type A

P

Alarm at a limit value based on the setpoint SP

3.6.1.1 Alarm 1 at $\mathbf{S P} \pm \mathbf{A L} .=$

3.6.1.2 Alarm 2 at $\mathbf{S P} \pm \mathbf{A L}$. $=$

Setting range: 0 to \pm extend of measuring range [phys. unit]
Reset hysteresis of alarm relays:
3.6.1.3 End of alarm 1 at $\mathrm{SP} \pm \mathrm{AL} .=\boldsymbol{€} \mathbf{H Y S}$ (HYS displayed after AL. ${ }^{=}$)
3.6.1.4 End of alarm 2 at $\mathrm{SP} \pm \mathrm{AL}=\boldsymbol{€} \mathbf{H Y S}$ (HYS displayed after AL.=)
Setting range: 0 to extend of measuring range [phys. unit] (x 0,1 at $d p=0)$

3.6.2 Alarm Type B

Alarm 1 at a fixed limit value

3.6.2.1 Alarm 1 at AL.-

Setting range: measuring range [phys. unit]
Reset hysteresis of alarm relay 1 :
3.6.2.2 End of alarm at AL.- - HYS
(HYS displayed after AL. ${ }^{-}$)
Setting range: 0 to extend of measuring range [phys. unit] (x 0,1 at $d p=0)$

3.6.3 Alarm Type C

Alarm 1 at leaving a band by the setpoint SP.
3.6.3.1 Alarm 1 at $\mathbf{S P} \pm \mathbf{A L} .=$ and at $\mathbf{S P} \pm \mathbf{A L}=$ (see also 3.6.1.1, 3.6.1.2)
Setting range: 0 to \pm extend of measuring range [phys. unit]
Reset hysteresis of alarm relay 1 :

> 3.6.3.2 End of alarm 1 at $\mathrm{SP} \pm \mathrm{AL} .=€ \mathbf{H Y S}$ and $\mathrm{SP} \pm \mathrm{AL} .=\boldsymbol{€} \mathbf{H Y S}$ (see also 3.6.1.3, 3.6.1.4)

Setting range: 0 to \pm extend of measuring range [phys. unit] (x 0,1 at $\mathrm{dp}=0)$

Alarm Typ A für Alarmrelais 1 und Alarmrelais 2

Alarm Type B for alarm relay 1

| 4 | 5 | 4 | 4 | 5 | 4 | 5 | 4 | 5 | 4 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Alarm Type C for alarm relay 1

Selection AL = 0:
No alarms, also not in case of sensor failure (see also 3.18: SE.b)
Selection AL=1: (Alarm relay 1 active)
Alarm relay $1=$ Type A (see 3.6.1.1)
Alarm relay 1 in case of sensor failure independent of the adjusted limit value.
Reset hysteresis of alarm relay 1 (see 3.6.1.3)
Selection $\mathbf{A L}=2:($ alarm relay 1 active)
Alarm relay $1=$ Type B (see 3.6.2.1)
Alarm relay 1 in case of sensor failure independent of the adjusted limit value.
Reset hysteresis of alarm relay 1 (see 3.6.2.2)
Selection: $\mathbf{A L}=\mathbf{3}$: (alarm relay 1 and alarm relay 2 active)

Alarm relay 1 = Type A (see 3.6.1.1)
Alarm relay 1 in case of sensor failure independent of the adjusted limit value.
Reset hysteresis of alarm relay 1 (see 3.6.1.3)
Alarm relay $2=$ Type A (see 3.6.1.2)
Reset hysteresis of alarm relay 2 (see 3.6.1.4)
Selection: $\mathbf{A L}=\mathbf{4}$: (alarm relay 1 and alarm relay 2 active)
Alarm relay 1 = Type B (see 3.6.2.1)
Alarm relay 1 in case of sensor failure independent of the adjusted limit value.
Reset hysteresis of alarm relay 1 (see 3.6.2.2)
Alarm relay 2 = Type A (see 3.6.1.2)
Reset hysteresis of alarm relay 2 (see 3.6.1.4)
Selection: $\mathbf{A L}=\mathbf{5}$: (alarm relay 1 and alarm relay 2 active)
Alarm relay $1=$ Type C (see 3.6.3.1)
Alarm relay 1 in case of sensor failure independent of the adjusted limit value.
Reset hysteresis of alarm relay 1 for AL.= (see 3.6.3.2)
Alarm relay $1=$ Type C (see 3.6.3.1)
Alarm relay 1 in case of sensor failure independent of the adjusted limit value.
Alarm relay 2 = Type A (see 3.6.1.2)
Reset hysteresis of alarm relay 1 for $\mathrm{AL} .=$ (see 3.6.3.2)
Reset hysteresis of alarm relay 2 (see 3.6.1.4)
Selection: $\mathbf{A L}=\mathbf{6}$: (alarm relay 1 and alarm relay 2 active)
Alarm relay 1 at AL. ${ }^{-}$and at $\mathrm{SP} \pm$ AL. $=$
Alarm relay 1 in case of sensor failure independent of the adjusted limit value.
Reset hysteresis of alarm relay 1 for AL.- (see 3.6.2.2)
Alarm relay 1 at AL. ${ }^{-}$and at $\mathbf{S P} \pm \mathbf{A L} .=$
Alarm relay 1 in case of sensor failure independent of the adjusted limit value. Alarm relay 2 = Type A (see 3.6.1.2)
Reset hysteresis of alarm relay 1 for $\mathrm{AL} .=($ see 3.6.1.4)
Reset hysteresis of alarm relay 2 (see 3.6.1.4)

Summary of Alarm selections

selection	alarm 1	alarm 2
0	-	-
1	A	-
2	B	-
3	A	A
4	B	A
5	A1 v A2 (C)	A
6	B v A2	A
sensor failure	alarm	no alarm

$\mathrm{v}=$ logical OR
Alarm types for alarm relay 1 and alarm relay 2

3.7 Decimal point for LED - displays

Selections: 0 Indication without decimal point
1 Indication with decimal point
V At any time the decimal point has been altered, the process variable display PV has to be rescaled. (see also 3.8 dI.L, dI.H)

3.8 Scaling the process variable display PV

Display.Low Enter: Zero point of the transmitter

 Indication at start of measuring range Setting range: -999 (-99.9 at $\mathrm{dP}=1) \leq \mathrm{dI} . \mathrm{L} \leq \mathrm{dI} . \mathrm{H}-1$ [phys. units] (dI.L must be less than dI.H) standard value: $\mathbf{0}^{\circ} \mathrm{C}$ or $\mathbf{3 2}{ }^{\circ} \mathrm{F}$Display.High Enter: End point of the transmitter Indication at end of measuring range Setting range: dI. $\mathrm{L}+1 \leq \mathrm{dI} . \mathrm{H} \leq 9999$ (999.9 at dP = 1) [phys. units] (dI.H must be greater than dI.L) standard value: $\mathbf{3 0 0}{ }^{\circ} \mathrm{C}$ or $\mathbf{5 7 2}^{\circ} \mathrm{F}$

At In.P $=0, \mathrm{dI} . \mathrm{L}$ and dI.H have to correspond to the $\mathrm{Pt} 100-$ measuring range of the supplied device (see type plate)
baelz 6496 / $6596-2.4-\ldots$: dI.L $=000(.0)$, dI. $\mathrm{H}=300(.0)$
baelz 6496 / 6596-2.2-.. : dI.L $=000(.0)$, dI.H $=400(.0)$
At In. $\mathrm{P}^{1} 0, \mathrm{dI} . \mathrm{L}$ and dI.H have to correspond to the measuring range of the connected transmitter. (see also 3.15: In.P)

3.9 Setpoint limitation

Setpoint limitation applies to the setpoint SP which can be set via the keyboard
It is ineffective for - the second setpoint SP. 2

- all remote setpoints

At SP.L = SP.H the setpoint has a fixed value.
Setpoint.Low lowest setpoint that can be set
Setting range: dI.L to SP.H [phys. units] (see also: 3.8: dI.L)

Setpoint.High highest setpoint that can be set
Setting range: SP.L to dI.H [phys. units] (see also: 3.8: dI.H)

3.10 Remote -/ local changeover

Changeover from remote analog setpoint to local setpoint and vice versa
Selections: 0 only local setpoint and SP. 2 effective
1 Changeover via digital input REM/LOC, setpoint via analog input (see also 3.16: In.S)
2 jolt - free (smooth) remote -/ local changeover by tracking the local setpoint to the remote analog setpoint before remote $-/$ local changeover. SP loc. $=$ SP rem. otherwise as 1

A remote analog setpoint has higher priority than a remote setpoint transfered via serial interface. In case of a signal error the internal setpoint is effective.

3.11 Second setpoint SP. 2 (option)

Setting range: dI.L to dI.H [phys. units] (see also 3.8: dI.L, dI.H)
Changeover to SP. 2 via digital input SP. 2
Operating Instructions OI 6496 / 6596

3.12 Setpoint ramp SP.r

Change rate of setpoint SP (gradient)
Setting range: $1(0.1$ at $\mathrm{dP}=1)$ to extent of measuring range in $\mathrm{SP} / \mathrm{min}$; SP [phys. unit] e.g.: $\operatorname{DSP}=5 \mathrm{~K} / \mathrm{min}$

Setting SP.r $=0$: no setpoint ramp, change of setpoint abruptly. Effective for local and remote setpoints. An analog, remote setpoint has to alter at least 0.2% of measuring range PV to trigger the setpoint ramp.

3.12 Setpoint ramp SP.r

The setpoint ramp is triggered (at SP.r >0):

- after switching on the device or after a power failure
- after sensor failure
- after every setpoint change (remote, local or SP.2)
- after switching over to the second setpoint SP. 2
- after remote -/ local changeover and vice versa
- after a control function STOP, CLOSE, OPEN (via digital input)
- after switching over from manual mode to automatic mode

The start point of the setpoint ramp is always the current value of the process variable PV (a)
The current setpoint is displayed.

3.13 Ramp direction

Effective direction of setpoint ramp SP.r (at SP.r >0)

Selections:

0 Setpoint ramp effective for increasing and decreasing setpoints
1 Setpoint ramp effective only for increasing setpoints
2 Setpoint ramp effective only for decreasing setpoints (see also 3.12: SP.r)

3.14 Process Gain P.G

Setting range: 1 to 255%
Gain of controlled process (system) P.G $=\frac{\text { Change in process variable PV }}{\text { Change in actuating variable } \mathrm{Y}}=\frac{{ }^{\prime} \mathrm{PV}}{{ }^{\prime} \mathrm{Y}}$ in \%
D PV [\% of measuring range of PV]
D Y [\% of actuating range (stroke) 0-100 \%]
e.g.: P.G $=50 \%: \frac{\mathrm{C}}{\mathrm{PV}}=0.5$
P. $\mathrm{G}=100 \%: \frac{\mathrm{I} \mathrm{PV}}{\mathrm{I} \mathrm{Y}}=1.0$
P. $\mathrm{G}=125 \%: \frac{\mathrm{I} \mathrm{PV}}{\mathrm{I} \mathrm{Y}}=1.25$

A change of 10% in the valve position DY will result in a change of 5% in the process variable PV.
A change of 10% in the valve position DY will result in a change of 10% in the process variable PV.
A change of 10% in the valve position DY will result in a change of 12.5% in the process variable PV.

The process gain P.G is required for self - optimization of the control parameters. If unknown, P.G is determined automatically during self - optimization (see also: 3.1: OPt)
In case of non - linear transfer behaviour of the system, the process gain changes with the working point (e.g. when controlling different setpoints).

3.15 Input for process variable PV (input PV)

Selections:

0 PV is detected with a Pt100 sensor and connected to the terminals $14,15,16$
1 PV is supplied as current signal $0-20 \mathrm{~mA}$ and connected to the terminals $12,16^{*}$.
2 PV is supplied as current signal $4-20 \mathrm{~mA}$ and connected to the terminals $12,16^{*}$.
3 PV is supplied as voltage signal $0-10 \mathrm{~V}$ and connected to the terminals 13,16 .
4 PV is supplied as voltage signal $2-10 \mathrm{~V}$ and connected to the terminals 13,16

* Not if a transmitter is connected in two-wire technology
(see also 5.: Electrical connection)

3.16 Input for remote setpoint SP (input SP)

Selections:
0 SP is detected with a Pt100 sensor and connected to the terminals $14,15,16$
1 SP is supplied as current signal $0-20 \mathrm{~mA}$ and connected to the terminals 12,16 .
2 SP is supplied as current signal $4-20 \mathrm{~mA}$ and connected to the terminals 12,16 .
3 SP is supplied as voltage signal $0-10 \mathrm{~V}$ and connected to the terminals 13,16 .
4 SP is supplied as voltage signal $2-10 \mathrm{~V}$ and connected to the terminals 13,16 By detected signal failure: changeover to internal setpoint.
(see also 5.: Electrical connection)

3.17 Measured value filter for process variable PV (filter)

Software low-pass filter 1st order with adjustable time constant Tf to suppress interference signals and to smooth small process variable fluctuations.
Setting range: 100 bis 255
Following assigments apply:

Input:	255	254	252	250	240			
230*	220	200						
Tf [s]:	10,22	5,10	2,54	1,69	0,62		0,37	0,26

3.18 Response to sensor failure PV (sensor break)

Response of actuator in automatic mode in case of: sensor short-circuit, sensor break, too low or too high signal value at $4-20 \mathrm{~mA}$ and $2-10 \mathrm{~V}$ signals.

Selections: 0 Final control element closes
 1 Final control element opens

The error message Err is indicated in the LED - display PV in the case of a transmitter / sensor fault. Alarm message, if an alarm ($\left.\mathrm{AL}^{1} 0\right)$ is configurated, independent of adjusted limit value.
Once the fault has been rectified, the controller reverts automatically to automatic mode. Monitoring is not possible in the case of electrical input signal without live zero point, 0 20 mA or $0-10 \mathrm{~V}$.

3.19 Controller output signal

Selections: 0 Output signal 0 to 20 mA or 0 to 10 V
1 Output signal 4 to 20 mA or 2 to 10 V

baelz automatic

position of output signal selector switch

P

3.20 Manipulated variable ramp Y.r

Maximum change rate of manipulated variable Y
Setting range: 1 to 255
Setting Y.r $=0$: no manipulated variable ramp, change of manipulated variable without delay Y.r $=$ actuating time for a displacement of $\mathrm{DY}=100 \%$

Following assignments apply:

Input :	164	33	16	6	3	2	1
Y.r [s]	1	5	10	30	60	80	160

The end value of the manipulated variable ramp is displayed.

3.21 Interlocking manual -/ automatic changeover (manual)

Selections: 0 Changeover via keyboard possible at any time
1 Interlocking in current status
Changeover MAn. to -1- in automatic mode : always automatic mode Changeover MAn. to -1- in manual mode : always manual mode

3.22 Direction of action

Selections: 0 Heating controller: final control element closes at increasing process variable PV 1 Cooling controller: final control element opens at increasing process variable PV

3.23 Transfer rate for serial interface (Baud) (effective at $6496 / 3$ and $6596 / 3$)

Serial interface RS 485, data transfer in accordance with MODBUS - Protocol
in RTU - mode
Selections: $0 \quad 19200$ Baud 32400 Baud
19600 Baud $\quad 4 \quad 1200$ Baud

24800 Baud

3.24 Address for serial interface (effective at 6496 / 3 and $6596 / 3$)

Setting range: 1 to 247
Address of the controller

3.25 Serial communication (effective at $6496 / 3$ and $6596 / 3$)

Selections: 0 The controller can be operated and set via the master computer and via the controller keyboard (parallel operating).
1 The controller is operated and set via the master computer. The controller keyboard, with the exception of the setting of S.C, is locked.

3.26 Second operating level

Select functions for the user - defined operating level.
Setting range: 0 to 63 :
0 No second operating level
1 Self-optimization can be activated on the operating level 2 (see also: 3.1: OPt)
2 Limit value and hysteresis of the selected alarm can be set on operating level 2 (see also 3.6: Alarm relays)
4 Remote -/ local changeover possible on operating level 2 (see also: 3.10: rE.L)
8 The second setpoint SP. 2 can be set on operating level 2 (see also: 3.11: SP.2)
16 The setpoint ramp SP.r can be set, switchend on and off on the operating level 2 (see also 3.12: SP.r)
32 The serial communication S.C can be set by defined on operating level 2 (see also 3.25: S.C)
The identifier numbers of the required functions are to be added and the result is set.
The password has to be activated. (see also: 3.27: PAS)
The access to the user - defined operating level is not interlocked via the password.

3.27 Access to the parameterization -/ configuration level (password)

Interlocking the paramerization -/ configuration level by means of the password Cod prevents unauthorized access.

Selections: 0 No interlocking of parameterization -/ configuration level. OL. 2 is deactive.
1 Access to parameterization -/ configuration level only after entry of the password via keyboard. OL. 2 is active. (see also: 3.26 OL. 2 ; valid password: see also: page 25: PAS / Cod)

4. Installation

The controller is suitable for installation in a front panel and control desk at arbitary installation position. Insert device from front in the prepared control panel cut-out and secure with the aid of the clamping tool provided. The centerings on the housing ease the installation of the device.

The ambient temperatur at the installation location must not exceed the permissible temperature specified for nominal use. Sufficient ventilation must always be provided, including instances of high component density.
The unit must not be mounted in explosion - hazardous areas.

5. Electrical connection

The plug - type terminals and the wiring diagram are located at the rear of the unit.
During installation, the regulations that are applicable to each country (DIN VDE 0100 in Germany) must be observed. Electrical connection must be carried out in accordance with the connecting diagrams / wiring diagrams of the unit.
Shielded cables must be used for the measuring lines and control lines (digital inputs). These lines must be seperated from the high - power lines, also in the control cabinet.
Prior to switching on the unit, make sure that the operating voltage indicated on the type plate corresponds to the mains voltage.
The connection terminals with the connected lines may be disconnected from the unit in power - off state only.

Maximum component parts
(6496/2-/3 and 6596/2-/3)
(see also 8.: ordering number)

minimum component parts ($6496 / 1$ and $6596 / 1$) terminal 11: digital input REM / LOC (standard)
(see also 8.: ordering number)

The same terminal functions are intended for the device 6596 like shown by the 6496 above
5.1 Wiring diagram

6. Commissioning

Procedure:	Corrective measures in case of malfunctions
o Unit properly installed?	see also 4.: Installation
o Electrical connection according to valid regulations and connection diagrams?	see also 5.: Electrical connection
o Switch on mains voltage. When the unit is switched on, all display elements in the front plate will light up for approx. 2 sec. (lamp test). The unit is then ready for operation.	Compare operating voltage, indicated on the type plate, to mains voltage.
o Switch over to manual mode.	see also 2.4: Manual mode
Ÿ Does the actual value display PV correspond to process variable at measuring point?	Check sensor, measuring line and electrical connection. see also 5.: Electrical connection
Ÿ Actual value display PV fluctuating / jumping ?	Adjust measuring filter FIL. see also: 3.17: FIL Unit in the immediate vicinity of powerful electrical or magnetic interference fields?
Ÿ Connect digital inputs*	see also 5.: Electrical connection
- Are the corresponding LEDs on the front plate illuminated ?	Check voltage supply for digital inputs, remote switching contacts, signal lines and electrical connection. see also 5.1: Wiring diagram
$\ddot{\text { Y }}$ Supply remote setpoint and switch over to remote operation*	see also 3.16: In.S ; 3.10: re.L ; 3.25: S.C
- Is remote setpoint SP dispalyed correctly ?	Check setpoint transmitter, measuring line and electrical connection. see also 5.1: Wiring diagram
Ÿ Open final control element - Heating controller: Actual value PV increasing? - Cooling controller: Actual value PV decreasing ? Ÿ Close final control element - Heating controller: Actual value PV decreasing ? - Cooling controller: Actual value PV increasing?	see also 2.4: Manual mode No response: Check final control element, positioner and electrical connection controller - final control element reverse action: switch over Heating / Cooling (see also 3.22: dIr)
- final control element does not close completely	Adapt zero points of controller output signal and positioner (see also 3.19: out)
Ÿ Set control parameters using self - optimization.	see also 3.1: OPt
o Automatic mode	
Manual -/ automatic changeover	see also 2.4: Manual mode
Set setpoint SP	see also 2.1: Setting the setpoint SP in the automatic mode

* Option

7. Technical data

Power supply

Power consumption
Weight
Permissible ambient temperatur

- Operation
- Transport an storage

Degree of protection
Design
Installation position
DI - feed voltage and measuring transducer feed voltage
Analog inputs

Accuracy
Digital inputs
Controller output
Analog output
Displays
Alarms
Relays

Serial interface

Data storage
$\left.\begin{array}{r}\left.\begin{array}{r}230 \mathrm{~V} \mathrm{AC} \\ 115 \mathrm{~V} \mathrm{AC} \\ 24 \mathrm{~V} \mathrm{AC}\end{array}\right\}-15 \% /+10 \%, 50 / 60 \mathrm{~Hz}\end{array}\right\}$
appr. 7 VA
appr. 1 kg
0 to $50^{\circ} \mathrm{C}$
-25° to $+65^{\circ} \mathrm{C}$
Front IP 65 according to DIN 40050
For control panel installation $96 \times 96 \times 135 \mathrm{~mm}$ (W x H x D)
arbitary
24 V DC, Imax. $=60 \mathrm{~mA}$
Pt100, $2.4=0^{\circ} \mathrm{C}$ to $300^{\circ} \mathrm{C}$ or $2.2=0^{\circ} \mathrm{C}$ to $400^{\circ} \mathrm{C}$
Connection in three - wire system
$0 / 4$ to 20 mA , input resistance $=50 \mathrm{Ohm}$
$0 / 2$ bis 10 V , input resistance $=100 \mathrm{KOhm}$
0.1% of measuring range
high active, $\mathrm{Ri}=1 \mathrm{k} \mathrm{W}$; n.c. $/ 0 \mathrm{~V} \mathrm{DC}=$ low

$$
12 \mathrm{~V} \text { to } 24 \mathrm{~V} \text { DC }=\text { high }
$$

$0 / 4$ to 20 mA , max. load $=500 \mathrm{Ohm}$
$0 / 2$ to 10 V min. load $=5 \mathrm{kOhm}$
0 to +10 V comply with 0° to $300^{\circ} \mathrm{C}(2.4)$ or 0° to $400^{\circ} \mathrm{C}(2.2)$, Imax. $=2 \mathrm{~mA}$
Two 4-digit 7- segment displays, LED ,red, digit height $=13 \mathrm{~mm}$
Alarm type A, B, C; normally closed contact principle
Contact equipment: 1 normally open potential - free
(Option: 1 change - over contact potentional - free)
Switching capacity: $250 \mathrm{~V} \mathrm{AC} / 3 \mathrm{~A}$
Spark quenching element
RS 485, MODBUS protocol acc. RTU - mode
1200 to 19200 baud
1 startbit, 8 data bit, 1 stopbit, no parity
Semi - conductor memory

baelz

8. Ordering number baelz 6496 / 6596

additional right
hand controller card

basic version	Device type	$\begin{aligned} & 6496 / 1 \\ & 6596 / 1 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 6496 / 2 \\ & 6596 / 2 \end{aligned}$	$\begin{aligned} & \hline 6496 / 3 \\ & 6596 / 3 \end{aligned}$
	1 x input Pt 100	X	X	X
	1 x input $0 / 4$ to 20 mA	X	X	X
	1 x input $0 / 2$ to 10 V	X	X	X
	Supply voltage 24 V DC	X	X	X
	$1 \times$ digital input REM / LOC	X	X	X
options *	5 x digital inputs		X	X
	$1 \times$ process variable output Pt 100, 0 to 10 V		X	
	1 x serial interface RS 485			X

9. Overview of parameterization -/ configuration level, data list

Parameter / configuration point

Optimization	OPt	1	No self - optimization Activate if required
Proportional band	Pb		1,0 to 999,9 \%
Integral action time	tn		1 to 2600 s
	tn $=0$	0	P controller at $\mathrm{td}=0, \mathrm{PD}$ controller at $\mathrm{td}>0$
Derivative action time	td		1 to 255s
	$t d=0$	o	P controller at $\mathrm{tn}=0, \mathrm{PI}$ controller at $\mathrm{tn}>0$
Working point	Y. 0		0 to 250% for Setpoint $=0$ \%
	Y.E		0 to 250 \% for Setpoint = 100 \%

Alarm relays
Alarm $1=\mathrm{A}$

Reset hysteresis
Alarm 1 = B
Reset hysteresis
Alarm 2 = A
Reset hysteresis
Decimal point

Scaling, low

Scaling, high

Setpoint limit, lower
Setpoint limit, upper
Remote -/ local changeover

Display Settings

OPt

Pb
tn
tn $=0$
Y.E

AL

No alarm, also not in case of sensor failure
Alarm relay $1=$ A, no alarm relay 2
Alarm relay $1=\mathrm{B}$, no alarm relay 2
Alarm relay $1=\mathrm{A}$, alarm relay $2=\mathrm{A}$
Alarm relay $1=\mathrm{B}$, alarm relay $2=\mathrm{A}$
Alarm relay $1=\mathrm{C}(\mathrm{A} 1 \vee \mathrm{~A} 2)$, alarm relay $2=\mathrm{A}$
Alarm relay $1=\mathrm{B} \vee \mathrm{A} 2$, alarm relay $2=\mathrm{A}$
0 to \pm extent of measuring range [phys. unit]
0 to extent of measuring range [phys. unit] $(x 0,1$ at $\mathrm{dP}=0)$
Measuring range: dI.L to dI.H [phys. unit]
0 to extent of measuring range [phys. unit] $(x 0,1$ at $\mathrm{dP}=0)$
0 to \pm extent of measuring range
0 to extent of measuring range [phys. unit] $(x 0,1$ at $\mathrm{dP}=0)$
dP
dI.L
 ($\mathrm{x} 0,1$ at $\mathrm{dP}=1$)
dI.H

Displayed value at end of measuring range dI.L+1 to 9999 [phys. unit] (x 0,1 at $\mathrm{dP}=1$)
\square dI.L to SP.H [phys. unit]

SP.L to dI.H [phys. unit]
Only local setpoint
at $\mathrm{AL}=1,3,5$
at $\mathrm{AL}=2,4,6$
at $\mathrm{AL}=3,4,5,6$

Displayed value at start of measuring range, -999 to dI.H -1 [phys. unit]
not valid for SP. 2
and remote setpoints

Changeover via digital input REM / LOC, setpoint via analog input
Jolt - free (smooth) remote -/ local changeover, by tracking SP loc. = SP rem., otherwise as 1

Second setpoint *
Setpoint ramp
Ramp direction

Process gain

SP. 2
SP.r
rA.d
 dI.L to dI.H [phys. unit] Changeover via digital input SP. 2

0 to measuring range [phys. unit per min]
Increasing and decreasing setpoint ramp
Only increasing setpoint ramp
Only decreasing setpoint ramp
P.G

[^1]| Process variable input PV | In.P | 0 | o | Pt $1002.4=0^{\circ}$ to $300^{\circ} \mathrm{C}$ or $2.2=0^{\circ}$ to $400^{\circ} \mathrm{C}$ | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | 1 | o | 0 to 20 mA | |
| | | 2 | o | 4 to 20 mA | |
| | | 3 | o | 0 to 10 V | |
| | | 4 | o | 2 to 10 V | |
| Remote setpoint input | In.S | 0 | o | Pt $1002.4=0^{\circ}$ to $300^{\circ} \mathrm{C}$ or $2.2=0^{\circ}$ to $400^{\circ} \mathrm{C}$ | by detected signal failure: changeover to internal setpoint |
| | | 1 | o | 0 to 20 mA | |
| | | 2 | o | 4 to 20 mA | |
| | | 3 | o | 0 to 10 V | |
| | | 4 | o | 2 to 10 V | |
| Measured value filter | FIL | | | 100 to 255 comply with 42 ms to 10 s | |
| Sensor break PV | SE.b | 0 | o | final control element closes | in automatic mode |
| | | 1 | o | final control element opens | |
| Controller output Y | out | 0 | o | Output signal 0 to 20 mA or 0 to 10 V | |
| | | 1 | o | Output signal 4 to 20 mA or 2 to 10 V | |
| Manipulated variable ramp | Y.r | | | 0 to 255 | |
| Manual -/ automatic changeover | MAn | 0 | o | Changeover via keyboard | |
| | | 1 | o | Interlocking in current status automatic | |
| | | | o | Interlocking in current status manual | |
| Direction of action | dIr | 0 | o | Heating controller | |
| | | 1 | o | Cooling controller | |
| Transfer rate * | bd | 0 | o | 19200 Baud 9600 Baud 4800 Baud 2400 Baud 1200 Baud | |
| | | 1 | o | | | |
| | | 2 | o | | | |
| | | 3 | o | | | |
| | | 4 | o | | | |
| Address * | Adr | 1 to 247 | | Slave address at bus - mode Address | |
| | | | | | | |
| Serial communication * | S.C | 0 | o | Operating and setting via controller keyboard and master computer Operating and setting via master computer | |
| | | 1 | o | | | |
| Second operating level | OL. 2 | 0 | o | No second operating level
 Self - optimization
 Add figures
 Limit value and hysteresis of alarm of desired
 Remote -/ local changeover functions and
 Second setpoint * set PAS
 Setpoint ramp to 1
 serial communication *
 Result of added indentifier numbers | |
| | | 1 | o | | | |
| | | 2 | o | | | |
| | | 4 | o | | | |
| | | 8 | o | | | |
| | | 16 | o | | | |
| | | 32 | o | | | |
| | | | | | | |
| Password | PAS | 0 | o | No interlocking, OL. 2 deactive
 Access only after entry of the password, OL. 2 active, Functions on OL. 2 not interlocked Code | |
| | | 1 | o | | | |
| | | | 1500 | | | |

Parameter / Configuration point
Process variable input PV

Display Settings
In.P $\quad 0$

0	o	Pt 100 2.4
1	o	0 to 20 mA
2	o	4 to 20 mA

2 o 4 to 20 mA
3 o 0 to 10 V
$4 \quad 0 \quad 2$ to 10 V

* Option

Device number
Date
Passed
Plant

$102^{\prime}-4$

[^0]: \& $>2 \mathrm{~s} \quad$ Press longer than 2 s

[^1]: * Option

